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Abstract

As the new ccNUMA architedure became popular in recent yeas, parallel programming
with compiler diredives on these machines has evolved to accommodate new neels. In
this gudy, we examine the effedivenessof OpenMP diredives for paralelizing the NAS
Parallel Benchmarks. Implementation details will be discussed and performance will be
compared with the MPI implementation. We have demonstrated that OpenMP can
adhieve very good results for paralelization on a shared memory system, but effective
use of memory and cache is very important.

1. Introduction

Over the past decale, high performance mmputers based on commodity microprocesors have
been introduced in rapid successon. These machines could be classified into two major
caegories. distributed memory (DMP) and shared memory (SMP) multiprocessing systems.
While both categories consist of physically distributed memories, the programming model on an
SMP presents a globally shared address pace Many SMP's further include hardware supported
cache mherence protocols aaossthe processors. The introduction of ccNUMA (cache wherent
Non-Uniform Memory Access) architedure, such as SGI Origin 200Q promises performance
scaling up to thousands of procesors. While all these achitedures support some form of
message passng (e.g. MPI, the de fado standard today), the SMP's further support program
annotation standards, or diredives, that alow the user to suppy information to the compiler to
assist in code paralelizaion. Currently, there ae two widely acceted standards for annotating
programs for parallel exeautions: HPF and OpenMP. High Performance Fortran (HPF) [1]
provides a data paral el model of computation for DMP systems. OpenMP [2], on the other hand,
is aset of compiler diredives that enhances loop-level parallelism for parallel programming on
SMP systems.

OpenMP is, in a sense, “orthogonal” to the HPF type of parallelization because wmputation is
distributed inside a loop based on the index range regardless of data locaion. Parallel
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programming with diredives offers many advantages over programming with the message
passing paradigm:

» simpleto program, with incremental path to full parallelizaion;

» ghared memory model, no neeal for explicit data distribution;

» scalahility achieved by taking advantage of hardware cahe aherence; and
» portability via standardizaion adivities.

Perhaps the main disadvantage of programming with compiler directives is the implicit handling
of global data layout. This, in the worst case, may create performance bottlened and not be
easlly overcome. While some vendors have provided extensions to improve data locality with
explicit data distributions and/or placement, these solutions are not portable and effedive use of
cache to get an efficient parallel program is gill going to be an important issue.

In this gudy we will examine the effediveness of OpenMP directives with the NAS PRarallel
Benchmarks (NPB) [3]. These benchmarks, extraded from a set of important agospace
applications, mimic aclass of computation in computation fluid dynamics (CFD), and have been
used to charaderize high performance @mputers. Further description of the benchmarks will be
given in sedion 3. The concepts of programming with a shared memory model and OpenMP
diredives are outlined in sedion 2. Detailed implementations of diredive-based NPBs and their
performance ae discussed in sedion 4. The conclusion isin section 5.

2. SMP Architecture and OpenM P Directives

The use of globally addressable memory in shared memory architecures allows users to ignore
the interconnedion details of parallel machines and exploit parallelism with minimum grief.
Insertion of compiler diredives into aserial program is the most common and cost-effective way
to generate aparallel program for the shared memory parall el machines.

OpenMP [2] is designed to suppat portable implementation of parallel programs for shared
memory multiprocessor architedures. OpenMP is a set of compiler diredives and callable
runtime library routines that extend Fortran, C and C++ to expressshared memory parallelism. It
provides an incremental path for parallel conversion of any existing software, as well as targeting
at scdability and performance for a complete rewrite or an entirely new software.

A fork-join exeaution model is employed in OpenMP. A program written with OpenMP begins
execution as a single process called the master thread. The master thread exeautes squentially
until the first parallel construct is encountered (such as a “PARALLEL and “ENDPARALLEL
pair). The master thread, then, credes ateam of threals, including itself as part of the team. The
statements enclosed in the parallel construct are exeauted in parallel by each thread in the team
until a worksharing construct is encountered. The “PARALLEL DO’ or “DO diredive is sich a
worksharing construct which distributes the workload of a DOloop among the members of the
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current team. An implied synchronization occurs at the end of the DOloop unlessan “END DO
NOWAIT is 9ecified. Data sharing of variables is Pecified at the stat of parallel or
worksharing constructs using the SHAREDand PRIVATE clauses. In addition, reduction
operations (such as Immation) can be specified by the “REDUCTION clause. Upon completion
of the parallel construct, the threads in the team synchronize and only the master threal
continues execution.

OpenMP introduces a powerful concept of orphan diredives that greatly simplify the task of
implementing coarse grain parallel algorithms. Orphan diredives are diredives encountered
outside the lexical extent of the parallel region. The cncept alows user to specify control or
synchronization from anywhere inside the parallel region, not just from the lexicaly contained
region.

There ae also tools available that alow the user to examine the @rrectness of an OpenMP
program and profile the exeaution for tuning pupose [4].

3. NASParallel Benchmarks

3.1. Benchmark Description

NAS Parallel Benchmarks (NPB’s) [1] were derived from CFD codes. They were designed to
compare the performance of parallel computers and are widely recognized as a standard indicator
of computer performance NPB consists of five kernels and three simulated CFD applicaions
derived from important classes of aaophysics applications. These five kernels mimic the
computational core of five numerical methods used by CFD applicaions. The simulated CFD
applicaions reproduce much of the data movement and computation found in full CFD codes.
The benchmarks are specified only algorithmicdly (“pencil and peper” specification) and
referred to as NPB 1. Details of the NPB-1 suite can be found in [1], but for completeness of
discussion we outline the seven benchmarks (except for the integer sort kernel, 1S) that were
implemented and examined with OpenMP in this gudy.

* BT isasimulated CFD application that uses an implicit algorithm to solve 3-dimensional (3-
D) compressible Navier-Stokes equations. The finite differences lution to the problem is
based on an Alternating Direction Implicit (ADI) approximate fadorization that demuples
the x, y and z dimensions. The resulting systems are Block-Tridiagonal of 5x5 bocks and are
solved sequentially along each dimension.

e SPisasimulated CFD applicaion that has a similar structure to BT. The finite differences
solution to the problem is based on a Beam-Warming approximate fadorizaion that
demuples the x, y and z dimensions. The resulting system has scalar pentadiagonal bands of
linea equations that are solved sequentially along each dimension.
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* LU isasimulated CFD applicaion that uses symmetric successive over-relaxation (SSOR)
method to solve aseven-block-diagonal system resulting from finite-diff erence discretization
of the Navier-Stokes equations in 3-D by splitting it into block Lower and upper triangular
systems.

* FT contains the omputational kernel of a 3-D fast Fourier Transform (FFT)-based spedral
method. FT performsthreeone-dimensional (1-D) FFT’s, one for ead dimension.

* MG uses a V-cycle multicrid method to compute the solution of the 3-D scalar Poisson
equation. The algorithm works continuously on a set of grids that are made between coarse
and fine. It tests both short and long distance data movement.

e CG uses a conjugate cradient method to compute an approximation to the smallest
eigenvalue of a large, sparse, unstructured matrix. This kernel tests unstructured grid
computations and communications by using a matrix with randomly generated locations of
entries.

* EPisan Embarrassngly parallel benchmark. It generates pairs of Gaussian random deviates
acording to a spedfic scheme. The goal is to edsablish the reference point for pesk
performance of a given platform.

3.2. Source Code Implementations

Sample implementations of NPB 1 are referred to as NPB 2 [4]. The NPB-2 implementations
were based on Fortran 77 (except for IS, which was written in C) and the MPI message passng
standard. They were intended to approximate the performance atypical user can expect for a
portable parallel program on a distributed memory computer. The latest release of NPB2.3 [4]
also contains a serial version of the benchmarks (NPB2.3-serial), which is a stripped-down
version of the MPI implementation. The serial version was intended to be used as a good starting
point for automated parall el tools and compil ers and for other types of parallel implementations.

3.3. Our Starting Point

The starting point for our study is the serial version of NPB2.3. Since the NPB2.3-serial is a
stripped-down version of the MPI implementation, its dructure was kept to be & close &
possible to the MPI implementation and, thus, was not tuned in a serial sense. For example, a
number of working arrays necessary for the MPI code can be reduced or eliminated in the serial
code to improve the sequential performance. In an effort to reduce the noise in the results due to
the presence of these “imperfedions,” we gplied optimizations to the sequential codes,
noticeably BT and SP, to improve implementation efficiencies and code organization that could
also limit the parallelization based on the insertion of “diredives.” For example, BT and SPwere
reorganized so that memory requirements for ClassA on one Origin 2000node ae reduced by 6
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times and 2 times respedively. Exeaution speal has been improved significantly. For LU, we
tested two types of implementations for parallelization: “pipeline”, which is used in the MPI
version, and "hyperplane” (or "wavefront™) that favors data-parall elism.

In the next sedion we first discuss the improvements that we applied to the serial version,
noticeably BT and SP, then we describe the OpenMP implementations that are based on the
improved serial versions. To avoid any confusion with the original NPB2.3-serial, we will refer
to the modified and improved serial versions of benchmarks as the Programming Baseline for
NPB (PBN). PBN is also the base for the HPF implementations of the NPB’s [6].

4. Implementation

4.1. Sequential Improvements

As mentioned above, during the process of paralelization with diredives, we noticed that
NPB2.3-serial contains redundant constructs left over from the MPI implementation. Several
working arrays can also be used more efficiently in the serial version to improve the
performance. In the following, we describe on the improvements applied to BT and SP since
these changes are more significant and may have implicaion in real applicaions.

In the original version of BT in NPB2.3-serial, separate routines are used to form the left-hand
side of the block tridiagonal systems before these systems are solved. Intermediate results are
stored in a six-dimensional working array (LHS); two five-dimensional arrays are used as
additional working space. (See next sedion for more details.) This is preferable for the multi-
partition scheme [4] used in the paralel MPI implementation to achieve marse-grained
communicéion in the Gaussan elimination/substitution process This has the drawbadk of using
large amount of memory, thus, potentially increasing the memory traffic. For the diredive
version, the eplicit communication is not a concern. So, before the parallelizaion of BT, we
replacel these large working arrays with significantly smaller arrays to reduce the memory usage
and improve the cahe performance This change dso requires fusing several loops.

An example of the relevant change is given in Figure 1. On the left panel, the five-dimensional
arrays FJAC and NJAC are assigned in the first loop nesting group and used in the seaond loop
nesting group. After merging the two outside loop nests (J and K) of the two groups, the two
working arrays (FJAC and NJAQ can be reduced to threedimensional, as indicated on the right
panel.



DOK=1,NZ
DO J=1,NY
DO | =0, NX+1
FIAC(*, *, 1,3, K)
NIAC(*, *, 1, J, K)
END DO
END DO
END DO
DOK =1, NZ
DO J=1,NY
DO I =1, NX
LHS(**,1,1,J,K) <=

LHS(**,2,1,J,K) <=
LHS(**,3,1,J,K) <=
END DO

END DO
END DO

FIAC(*,
NJAC( *,
FIAC( *
NJAC( *,
FIAC(*,
NJAC( *,

*,1-1,3,K)
*,1-1,3,K)
¥, 1,3, K)
*1,3,K)
*, 141, 3, K)
*, 141, 3, K)

DOK=1, NZ
DO J=1,NY

DO | =0, NX+1
FIAC(*, *, 1)
NJAC(*, *, 1)

END DO

DO I =1, NX
LHS(**,1,1,J,K) <=

FIAC(*,
NJAC( *,

LHS(**,2,1,d,K) <=

FIAC(*,
NJAC( *,

LHS(**,3,1,d,K) <=

FIAC(*,
NJAC( *,

END DO
END DO
END DO

Figure 1: The left pandl illustrates the use of working arrays in BT from NPB2.3-serial. The right
pand shows the same code section but with the use of much smaller working arrays. The first two

dimensions of FJAC, NJAC and LHS are used for 5x5 blocks.

The same optimizaion can be gplied to the use of array LHS, which was reduced to four
dimensions. The final memory-optimized version of BT uses only 1/6 of the memory neeled by
BT in NPB2.3-serial. The performance improvement of the new version is obvious. the serial
execution time has been reduced by a fador of two on four different machines (seethe summary
in Table 1 and Figure 2). The timing profile of the key routinesin BT is given in Table 2. Asone
can see the memory optimizaion on BT has improved the performance of the three solvers
(X/YIZ_SOLVE) by about 50%.

Table 1: Performance improvements of the optimized BT and SP on a single node. The eceaution
timeis given in seconds and the MFL OP/sec numbers are included in parenthesis.

Processor Type Size NPB2.3 Optimized Change
BT

Origin2000(250MHz) | ClassA | 21624(77.82) | 10752(15651) | 50.3%

T3E Alpha(300MHz) | ClassW | 2181(35.39) 117.0(65.95) | 46.4%

SGI R5000(150MHz) ClassW 549.8(14.04) 2650(29.13) | 51.8%

PentiumPro (200MHz) | ClassW | 3168(24.36) 1212(6369) | 617%




S
Origin2000(250MHz) | ClassA | 14783(57.51) | 9714(87.52) | 34.3%
T3E Alpha (300MHz) | ClassA | 31943(26.61) | 17083(49.76) | 46.5%
SGI R5000(150MHz) | ClassW | 13242(10.70) |  7741(1831) | 415%
PentiumPro (200MHz) | ClassW | 7589(1868) |  4490(3157) | 40.8%

Table 2: Breakdown comparison o routines in the optimized and NPB2.3 BT. Timing was
obtained on an Origin2000 no@ (195 MHZz) for the Class A problem size The rdative

percentage of timing isincluded in parenthesis.

Component Time (NPB2.3) Time (Optimized) | Change
RHS 23287 ( 8.84%) 24859 (16.98%) | (6.75%)
XSOLVE 72291 (27.44%) 36578 (24.98%) | 49.40%
YSOLVE 79375 (30.13%) | 37655 (25.72%) | 52.56%
ZSOLVE 86292 (32.76%) 46374 (31.67%) | 46.26%
ADD 21.72 ( 0.82%) 21.40 ( 1.46%) | 1.47%
Tota 263420 (100.0%) | 146425 (1000%) | 44.41%

160+ 90+

OSP NPB2.3-serial
B SP Optimized

OBT NPB2.3-serial |
B BT Optimized

MFLOPs/sec
MFLOPs/sec

LN W W W W W W

PPro-
200MHz

R5K-
150MHz

T3E-
300MHz

O2K-
250MHz

R5K-
150MHz

PPro-
200MHz

T3E-
300MHz

O2K-
250MHz

Figure 2: Comparison d serial performance of the optimized BT and SPwith NPB2.3-serial.

A similar optimization, namely on the more dfedive use of working array LHS, has been
applied to the serial version of SP. The execution times of the optimized SPand the version from
NPB2.3 are compared in Table 1 and Figure 2. The improvement of exeaution time for SPis not
as significant as that for BT because in SP, the temporary working arrays are smaller. The serial
performance is gill improved by about 40% on average.
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4.2. Application Benchmark BT

The main iteration loop in BT contains the following steps:

DOSTEP=1 ,N ITER
CALL C OWUTE_RHS
CALL X _SOLVE
CALLY _SOLVE
CALL Z _SOLVE
CALL ADD

END DO

The RHSarray is first computed from the airrent solution (COMPUTE_RHSBIock tridiagonal
systems are formed and solved for ead direction of X, Y, and Z successvely (X_SOLVE
Y_SOLVE Z_SOLVB. Thefinal solution isthen updated (ADD.

The optimized serial version of BT is our sarting point for the OpenMP implementation. There
are several steps in the parall elization process

1) Identify loops where different iterations can be exeauted independently (parallel loops).

2) Insert “!ISOMP PARALLEL DO” diredives for the outer-most parallel loops to ensure
large granularity and small parallelization overhead. If several parallel loops can be
grouped into a single parallel region, the “!$OMP PARALLEL” directive is used. This
can potentiall y reduce the fork-and-join overhea.

3) List al the privatizable variablesin the “PRIVATE() " constructs.

4) Touch the data pages by inserting initialization loops in the beginning of the program. On
a cabe mherent non-uniform memory architedure (ccNUMA) like the Origin 200Q a
data page is owned by a procesor that touches the data page first unless page migration
is turned on. Such a scheme neals to be tested on other SMP systems.

The identification of parallel loops and privatizable variables can be asisted by computer-aided
tools such as CAPO [8] (based on a parallelizaion tool kit, CAPTools [9], developed at the
University of Greenwich). Additional parallelization involves reduction sums outside the
iteration loop in computing solution errors and residuals, which are eaily handled with the
“REDUCTION diredive.

Timing profiles of the key code sedions in the OpenMP BT were measured on the Origin2000
The results are shown in Figure 3. A major portion of the exeaution time is gent in the three
solvers (xsolve , ysolv e, zsolv e), which scale fairly well (close to linea). The zsolve

routine spends more time than xsolve and ysolve becaise data were touched initially in
favor of the x and y solver. The worse scalability of rhsz can also be dtributed to the same
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cause. The second-order stencil operation in rhsz uses the K+2, K+1 and K elements of the
solution array to compute RHSfor the zdiredion:
RHS(1,J,KY=A *U(l,J,K-2)+B *Ul,J,K- 1) +C*U(1,J, K)
+D*U(1,J, K1) +E *U(1,J, K+2).

Such an operation acesses memory with long strides and is not cade friendly. One way to
improve the performance is by first copying a slice of data in the K diredion to a small 1-D
working array, performing the stencil operation, then copying the result badk to RHS This
tednique, in fad, isused in the FT benchmark as described in a later sedion. The slightly worse
performance of the “ADD routine @n be dtributed to the small amount of calculation done
inside the parallel loop and the paralization overhead of the “PARALLEL DO’ diredive seems
to play arole. Overall, the diredive-based BT performs very close to the MPI version (optimized
for memory usage) although the latter ill scales better (seesedion 0 for more discusson).

4.3. Application ! oo T o
Benchmark SP s | O >a BT Class A | _|
The iteration procedure of SP SrQ =~ .
. .. P > 3r \\\O 69\ _
isvery similar to BT athough § 2| -\ S .
2
the gproximate fadorization  10° i 2
is different. In one time £ 5F
. . . c 3 r —@— total
iteration, the following steps & 2 —m— rhsx
. 3 1 L -O— rhsy
aretakenin SP. g 10 £ | =
5r —/\— xsolve
CALL C OWUTE_RHS 3 [ “a ysolve
CALL T XI NVR 2 r —O— zsolve
CALL X _SOLVE 10° - —%— :Adsll
CA‘_L T XI N\/R | L L Lol L L
CALLY SOLVE 1 2 3 456 810 20 30
CALLT )_(I NVR Number of Processors
CALLZ SOLVE Figure 3. Exeaution profile of different components in OpenMP BT,
CALL T ZETAR measured on the Origin 200Q The total time from the MPI version is
CALL ADD shown as areference (same for other cases).

The optimized serial version

of SPas described in section 4.1 was used for paralelizaion. The steps taken to paralelize SP
were very similar to those for BT. The outer-most loops in each of these routines were
parallelized with the “PARALLEL DO diredive. To further reducethe parall elizetion overhea,
several end-of-loop synchronizaions have been removed (mostly in COMPUTE_RH®y the use
of “ISOMP END DO NOWAI T”, aswas donein BT.
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The profile of the diredive-based parallel version of SPis shown in Figure 4. For the class A
size, the overall performance of the OpenMP SPis better than the MPI version from NPB2.3 on
lessthan 9 processors, but the MPI version scales better (see more discussion in sedion 4.8).
Further analysis has indicated that the performance bottlened of the diredive version is from
rhsz in COMPUTE_RHS8&though routine ADD did not scale & well. The situation is very
similar to what was in BT (see sedion 4.3) where the seaond-order stencil operation on the K
diredion inrhsz has caused more cadies misses and remote memory acaessthan on the other
two dredions. This is also the reason for poor performance in zsolve , which runs about a
fador of 2-3 times slower than xsolve and ysolve on 1 processor and 4 times slower on 16
Proces9ors.

T T T T T T T 1] T T
4.4. Application Benchmark —
LU 103 §®\\ SP Class A E
5F ]
LU fadorizes the gquation into o 3T ]
. 15 B 7]
lower and upper triangular & .. _ .
sysems. The sysems are 2 5[ ; :Q:: ﬁ?]tg
solved by the SSOR algorithm % 3t 1[-0- rhsy
in the followingiteration loop. 5 0t L 1|78 e
= - 3|—a— ysol
_ 5 E ] ysolve
DO I STEP=1, | TMAX w 3l 1|—0— zsolve
CALL C OWUTE_RHS 2+ 4| —w— txinvr
—%— tzetar
CALL J ACLD 10° £ 3| —%— add
C;A\LL B LTS | I I I [ | I I ——- MPI
CALL J ACU 1 2 3 456 810 20 30
CALL B UTS Number of Processors
EI\SA\IDSI(_)A DD Figure 4: Exeaution profile of different components in the directive-

_ ~ based SP, measured on the Origin 200Q
As in BT and SP, the RHS is

first cdculated. Then the lower-triangular and diagonal systems are formed (JACLD) and solved
(BLTS), followed by the upper-triangular system (JACU and BUTS. The solution is lastly
updated. In solving the triangular systems, the solution at (i,j,k) depends on those at (i+e,],k),
(i,j+ek) and (i,j,k+€) where e=-1 for BLTS and e=1 for BUTS

There ae & least two methods to implement LU in parallel: hyperplane and pipelining. The
hyperplane (or wavefront) algorithm exploits the fad that, for al the points on a given hyper-
plane defined by | = i+j+k, cdculations can be performed independently, provided the solution
for |+eisavailable. Thisisillustrated in the left panel of Figure 5 for a 2-D case. Bullets indicate
points where solutions are arealy calculated and circles are points to be alculated. The
calculations are performed along the diagonal. As we will seg the hyperplane algorithm does not

-12-



utilize cahe lines well for either column-major or row-major storage of data (seelater discussion
inthis edion).

hyperplane pipelining

O OO OO0 O OO O O 0O 0 O O
I O O O O O O o 3 o O 0O 0 O ©o
o o % 0 0 0 O O

_ O O 2 0 _0nNO O
| oo e
O O 1 O 0 O O

o o 0! e % 0 0 O

e ¢ o 0 0 O

Figure 5: Schematic il lustration of the hyperplane and pipeling algorithms.

The implementation of the parallelized hyperplane algorithm with directives is graightforward.
Index arrays for all points on a given hyperplane | are first cdculated. Loops for solving all
points on a given hyperplane can then be performed in parallel. A sketch of the implementation
for the lower triangular system is simmarized below.

DO L=LST,L END
CALL CALCNP(L,N P,1 NDI,I NDJ)
I $OVWP PARALLEL DO PRI VATE(I, J, K, N)
DO N=1, NP
= 1ND (N)
J= INDI(N)
K=L-1- J
CALL JACLD(I,J, K)
CALL BLTS(I, J, K)
END DO
END DO
The upper triangular system is similar except that the L loop starts from LENDand deaements to
LST. The index arrays can be pre-calculated before the time iteration loop to eliminate the
repetition and improve the performance

The second method for the paralel implementation of the SSOR algorithm in LU is pipelining.
The method is illustrated in the right panel of Figure 5 for a cae where four processors are
working on the pipeline with work distributed along the J diredion. Processor 0 starts from the
low-left corner and works on one slice of data for the first K value. Other processors are waiting
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for data to be available. Once procesor 0 finishes its job, processor 1 can start working on its
dlice for the same K and, in the meantime, procesoor 0 moves onto the next K. This process
continues until all the procesors become adive. Then they all work concurrently to the opposite
end. The st of pipelining results mainly from the wait in startup and finishing. A 2-D
pipelining can reduce the wait cost and was adopted in the MPI version of LU [10].

The implementation of pipeline in LU with OpenMP diredives is done by the point-to-point
synchronization through the “1$OMP FLUSH() " diredive. This diredive ensures a ansistent
view of memory from all threads for the variables enclosed in the agument and is used at the
precise point at which the synchronization is required. As an example of using this directive to
set up a pipeling, the structure of the lower-triangular solver in SSORIs illustrated in the
following.

I $OWP PARALLEL PRI VATE(K, iam nunt)
ia m= onp_get _thread_num()
nunt= onp_get_numt hr eads()
is ync(iam=0

' $OVP BARRI ER
DO K=KST, KEND

CALL JACLD(K)
CALL BLTS(K,iamisync, nunt)
END DO
' $OVP END PARALLEL

The K loop is placal inside aparallel region, which defines the length of the pipeline (refer to
Figure 5). Two OpenMP library functions are used to obtain the aurrent thread ID (iam ) and the
total number of threads (numt). The globally shared array “isync ” is used to indicae the
availability of data from neighboring threads: 1 for ready, O for not ready. Together with the
FLUSHdiredive it sets up the point-to-point synchronization between threads, as was done in
routine BLTS.

SWBRAUTI NE BLTS(K, i am i sync, nunt)
in teger iam isync(0:iam)
il imt=M I N(nunt, JEND- JST)
if( itamgt.0. and. itamle.ilimt)t hen
dowhile( isync(iam1l).eq.0)
' $OVP FLUSH(i sync)
endd o
isync(iam1)=0
' $OVP FLUSH(i sync)
endif
' $OWP DO
DO J =JST, JEND
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Do the work for (J,K)

ENDDO
| $OVP END DO nowai t
if( iam.It. ilimt)t hen

dowhile( isync(iam.eq.1)
' $OVP FLUSH(i sync)
endd o
isync(iam=1
' $OVP FLUSH(i sync)
endif
RETURN
END

The two WHILE loops st up waits through the
variable isync . The FLUSHdiredive ensures
the value of isync is up-to-date for all
threads at the point where the diredive is
present. The first synchronizaion before the J
loop behaves similar to the receive function in
a message passng pogram, which waits for
availability of data from the previous thread
(lam-1 ). The semnd synchronizetion is
similar to the send function, which sets a flag
for the next thread. It is neassary to remove
the end-of-loop synchronization for the Jloops
in both JACLD and BLTS with the “NOWAIT
construct since the pipeline implies
asynchronous for the loop iterations.

Both parallel versions were tested on the
Origin 2000 and compared with the MPI
implementation. The time profiles for key
routines are plotted in the upper panel of
Figure 6 for the hyperplane version and in the
middle for the pipeline version. Timing ratios
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Figure 6: Exeaution profile of different components
in LU for both the hyperplane and pipéelining
algorithms. Two methods are compared at the
bottom.

of the two versions are given in the bottom panel. The pipeline implementation clealy has better
performance than the hyperplane version, about 50% better on 16 processors. The RHS behaves
similar, but the main differences come from the four main routines in the SSOR solver and
become larger as the number of procesors increases. It can be dtributed to better cade
utilization in the pipeline implementation. To support this argument, cade misses for the two
versions were measured with the hardware @unter avail able on the Origin 2000R10K processor
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and the results are listed in Table 3 measurements done on 1 CPU and 4 CPUs. With one CPU,
the pipeline version hes slightly lessL1 and L2 cade misses, but the TLB miss is significantly
less With four CPUSs, both versions have lessL2 cache misses and, till, the pipeline version has
much better cade performance.

When comparing with the message passing implementation of pipelining, the diredive-based
version does not scale @ well. We believe this performance degradation in the directive
implementation due to the sizable synchronization overhead in the 1-D pipeline & against the 2-
D pipeline used in the message passing version.

Table 3: Cache performance of the hyperplane and pipéeline versions of LU, measured with the
per f ex tool on the Origin200Q Cycles and cache misses are given in seconds. Numbers
were obtained for /10th o thefull iteration for Class A.

1CPU 4 CPUs
Counter hyperplane | pipeline | hyperplane | pipeline
Cycles (ser) 152987 | 133395 158671 | 137.769
L1 cache miss (se) 47508 44.693 47.296 44.760
L2 cache miss (se) 39.164 32234 20.744 14.417
TLB miss (se) 30419 13317 31.205 12.857
L1 cachelinereuse 5.646 7.062 6.226 9.315
L2 cachelinereuse 9.165 10.618 18.106 25016
L1 ht rate 0.8495 0.8760 0.8616 0.9031
L2 ht rate 0.9016 0.9139 0.9477 0.9616

45. Kernd Benchmark FT

Benchmark FT performs the spedral method with first a 3-D fast Fourier transform (FFT) and
then the inverse in an iterative loop.

CALL S ETUP

CALL FFT(1)

DO | TER=1, N | TER
CALL E VOLVE
CALL FFT(-1)
CALL C HECKSUM

END DO

The 3-D data elements are filled with pseudo random numbers in SETUR Since the random
number sead for eat K value @an be pre-calculated, the K loop that initializes each data plane
can be donein parallel, asillustrated in the following:

DO K=1,D 3
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seeds(K)= Cal c_seeds(K D 1,D 2)

END DO
 $OVP PARALLEL DO PRI VATE(K...)
DOK=1,D 3
W(K _plane)= GCenerate_prandon(seeds(K),D 1*D2)
END DO

The 3-D FFT in the kernel is performed with three onseautive 1-D FFTs in eadch of the three
dimensions. The basic loop structure of the 1-D FFT is as follows (for the first dimension).

' $OWP PARALLEL DO PRI VATE(I, J, K, W

DOK=1 ,D 3
DOJ=1 ,D 2
DOI=1 ,D1
WIi)=U (1,3 ,K)
END DO
CALL CFFTZ(...,W)
DOI=1 ,D1
Wl,Jd ,K)=W (I
END DO
END DO
END DO

A dlice of the 3-D data (U) is first copied to a 1-D work array (W). The 1-D fast Fourier
transform routine CFFTZ is called for W. The result is returned to W and, then, copied bad to
the 3-D array (U). Iterations of the outside K and J loops can be exeauted independently and the
“PARALLEL DO diredive is added to the K loop with working array W as private. Better
parallelism could be achieved if the nested J loop is also considered. However, this would
require the use of non-standard extensions to OpenMP diredives provided in the SGI MIPSro
compiler used in this gudy.

Inside the iteration loop, routine EVOLVEcomputes the exponent fadors for the inverse FFT. It
contains three nested DOloops. The outer loop is leded for paralelization with diredives.
Lastly, aparallel reduction isimplemented in routine CHECKSUM

The exeaution profile of several main components of the parallel code for Class A is shown in
Figure 7. Thethreel-D FFT routines and SETUPscale up very well although EVOLVEperforms
slightly worse for more than 16 pocessors. CHECKSUMised very little time, thus, was not
shown in the figure. It is worthwhile to point out that the overall performance of the OpenMP
version is about 10% better than the hand-coded MPI implementation from NPB2.3. The better
performance of the diredive version is due to the dimination of a 3-D data array which was
needed in the MPI version. The dhange has improved the memory utili zation of the ade.
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Figure 7: Exeaution profile of different components in the OpenM P-based
FT. Thetotal timeis also compared with the MPI version from NPB2.3.

4.6. Kernd Benchmark MG

The iteration loop of MG consists of the multigrid V-cycle operation and the residual calculation.
The V-cycle algorithm is performed in the following sequence

CALLT prj3

CALL psinv

CALL interp

CALL resid
CALL psinv

The residual is first restricted from the fine grid to the coarse with the projedion operator
(rprj 3). An approximate solution is then calculated on the marsest grid (psi nv), followed by
the prolongation of the solution from the marse grid to the fine (in t er p). At eat step of the
prolongation, the residual is calculated (r esid ) and a smoother is applied (psi nv).

Parallelization of MG with diredives is graightforward. “PARALLEL DO diredives are alded
to the outer-most loops in the @ove mentioned routines. Reductions (+ and MAX are used in the
calculation of norm. Since the loops are well organized in the benchmark, it is not surprising that
the performance of the OpenMP version is very close to the MPI version (as compared in Figure
8). The exeaution profile of each component in MG has shown consistent results and gaod
speadup. It indicates that the loop-level parallelization has worked well for MG.
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4.7. Kernd BenchmarksCG and EP

CG and EP are probably the easiest ones for parall elization in the seven studied benchmarks. So
we summary them here in the same subsedion.

The paralelizaion of CG is mostly

5 :®\ .
performed on the loops inside the 3L @\ CG Class A | ]
conjugate gradient iteration loop, which 10t L 63\\ -
consists of one sparse-matrix vector @ 5F — — .
multiplication, two reduction sums and & L% ﬁ,ﬁf.cnve O——=c0 ]
several paxpy operations. Norms are fg’ 10° - —
caculated (via reduction) after the g 192 L9 |
- - : “ 5 - \@ EP Class A | 3
iteration loop. Adding “PARALLEL g s¢ ~~_ -

x L -

DO diredives with proper reductionson @ 3 [ ®\® _

these loops sems working reasonably 10! | —— T~ .

) ) o £ | —®— directive @ 3

well, as illustrated by the time profile in 5F [——- MPI \@ .

Figure 9. The dhange of exeaution time 3L L L
1 2 3 456 810 20 30

from 1 to 2 CPUsis sub-linea, but from
4 to 8 CPUs is super-linear. This sems
ocaurring in the MPI version as well.
But for more than 16 pocesrs, the
performance of the diredive version degrades quickly, most likely due to that the overhead
asociated with diredives wins over the small workloads for the loops considered. Setup of the

Number of Processors

Figure 9: Exeaution time of the OpenMP directive-based
CG and EP versus the MPI implementations.
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sparse matrix (makea) with random numbers was done in serial. Profiling with the perfex  tool
on the Origin 2000 has indicaed that irregularly acessing the matrix causes large amount of
L1/L2 cache misses, which certainly affed the performance on large number of processors.

In the EP benchmark, the generation of pseudo random numbers can be done in parallel (asin the
case of FT). The main loop for generating Gaussian pairs and tallying counts is totally parallel,
with several reduction sums at the end. Performance data (Figure 9, lower panel) have indicated
that the diredive parallel version has a linea speedup, essentially overlapping with the MPI
implementation.
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fador is due to the long-stride acessof memory in several codes, which is not cade friendly
and causes remote-memory congestion. In the MPI version, the memory acessis pretty much
local (to acompute node). The utilization of overlapping computation and com-munication in the
MPI versions, such as BT and SP, improves salability.

At least in the cae of CG, the performance degradation on large number of processors is due to
the poa cade handling in the ade, as indirectly indicated by the relative small MFLOP values
compared to the other benchmarks (except for EP). The paralelization for CG with diredives
was done & much finer-grained loop levels and the overhead associated with it will likely
dominate on the large number of processors.

In LU, the pipeline implementation performed better than the hyperplane version, in both time
and scdability. The pipeline version has better cade performance In order to get even closer to
the performance of the MPI version, a 2-D pipelining seems neassry.
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Figure 11: Measured execution time for the seven benchmarks parallelized with OpenMP
diredives (filled symbols) in comparison with the NPB2.3-MPI version (open symbols). Two
additional curves are included for the optimized MPI version o BT and a hyperplane OpenM P
implementation o LU.
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Another observation is that the memory optimization for BT has impact not only on the serial
performance, but also on the parallel performance The OpenMP version of BT is about a fador
of two better than the MPI version in NPB2.3 (filled circles vs. open squares in Figure 10). After
applying the similar optimizaion technique to the MPI version, the performance has been
improved by a fador of two (filled squares in Figure 10). Becaise of the limited cadche sizein a
machine, it is gill important to effedively utilize memory to reduce the catie misses (cache-
memory traffic) and improve the performance The improvement for SP is not as profound as
that for BT, but the dfed is visible on small number of processors.

5. Conclusion

The arrent work presented a study of the effectiveness of the OpenMP diredives to paralelize
the NAS Parallel Benchmarks. The seven benchmarks implemented show very good
performance, even though the scalability is worse than the MPI counterpart. However, this
situation could be improved with the use of nested parallelism (or even multi-level parallelism)
at different loop nesting levels. Still the most plausible strength of OpenMP is its simplicity and
the incremental approad towards parall elization.

The OpenMP implementations were based on the optimized sequential versions of the original
NPB2.3-serial [4]. Together with an HPF implementation [6], they form the Programming
Baseline for NPB (PBN). Tedhniques explored in the study can certainly be gplied to more
realistic gpplicaions and can be used in the development of parallization tools and compilers. In
fad, this gudy resulted from the comparison of parallization tools and compilers [2] and was
done in conjunction with the development of a parallelizing tool, CAPO [8], for the aitomated
generation of OpenMP parallel programs. Another ealier work [11] has presented the study of
tools and compiler for parall elization of NAS Benchmarks with diredives.

Further work will be done on the improvement of the scalability of PBN-OpenMP and the
development of an OpenMP C version of IS benchmark for the completion of the suite. New
effort will emphasize on the development of a benchmark suite to incorporate the existing
benchmarks to run concurrently on a computational grid environment.

We would like to adknowledge the valuable discussion with and suggestion from the original
NPB developers, in particular, Drs. Maurice Yarrow and Rob Van der Wijngaart &8 NASA Ames
Reseach Center. We also want to thank Dr. Gabriele Jost for testing the implementation.
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Appendix

Table 4: Execution time and MFL OP/sec/proc (in parenthesis) of the OpenMP directive-based NPBs (7
benchmarks) measured on the SGI Origin 200Q 195MHz. For comparison, timings of the MPI
implementation from NPB2.3 are also included in the table.

BT Class A
#Procs | NPB2.3-MPI | MPI-optimized OpenM P
1 26110 (64.45) | 16412 (102.54) | 14778 (113.87)
2 - - 7490 (112.34)
4 7786 (54.04) | 4116 (102.22) | 387.6(108.54)
9 3905 (47.88) | 167.8(111.44) | 1779 (105.09
16 | 2232(47.12) | 937(11222) | 1061 (99.09)
25 1006 (66.90) | 621 (108.498 76.0 (88.55)
32 - - 54.3 (96.79)
36 96.8 (48.27) 485 (96.42) 53.7 (87.00)
SPClassA
#Procs | NPB2.3-MPI OpenMP

1 16384 (51.89) | 12271 (69.29)

2 - 646.0 (65.80)

4 4128 (51.49) | 3504 (60.64)

8 - 1750 (60.74)

9 1544 (61.18) | 1608 (58.74)

16 88.4 (60.11) 91.4 (58.15)

25 55.2 (61.61) 72.7 (46.79)

32 - 51.8 (51.28)

36 56.8 (41.58) -
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LU ClassA

#Procs | NPB2.3-MPI OpenMP-hp OpenM P-pipe
1 15484 (77.05) | 15183 (78.57) | 12344 (96.64)
2 7311(81.58) | 7382(80.81) | 5856 (101.86)
4 3440 (86.71) | 4003 (74.49 3362 (88.69)
8 1587 (93.99) | 2271 (65.68) 184.4 (80.88)
9 - 2138 (61.99 -

16 | 739(100.90) | 1515(49.22) | 96.1(77.54)
32 389 (95.83 1007 (37.02) 57.1(65.23)
FT ClassA

#Procs | NPB2.3-M Pl OpenM P
1 1334 (53.50) | 11446 (62.35)
2 825 (43.25 | 60.22(59.25)
4 41.3 (43.20) 30.94 (57.66)
8 214 (41.68) | 16.15(55.23)
16 11.3 (39.47) 8.59 (51.95)
32 6.1 (36.56) 4.84 (46.05)

MG ClassA

#Procs | NPB2.3-MPI OpenM P
1 534(72.92) | 47.58(8181)
2 31.0(62.80) | 27.06(71.92)
4 14.9(65.33) | 13.71(71.00)
8 7.5 (64.90) 6.99 (69.60)
16 4.0 (60.84) 3.91(62.27)
32 2.2 (55.31) 2.53(48.15)
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CG ClassA

#Procs | NPB2.3-M Pl OpenM P
1 44.40(33.71) | 47.74(31.35)
2 2846 (26.30) | 2865(26.12)
4 13.62(27.46) | 14.03(26.66)
8 4.54 (41.24) 4.76 (39.32)
16 2.67 (35.05) 2.46 (37.95)
32 1.78(26.20) 2.19(21.32)
EP ClassA
#Procs | NPB2.3-M Pl OpenM P
1 1236 (4.34) | 12446 (4.31)
2 62.0 (4.33) 62.34 (4.30)
4 310 (4.33) 31.13(4.31)
8 155 (4.33) 1559 (4.30)
16 7.8 (4.30) 7.83(4.28)
32 4.0 (4.19) 4.11(4.08)
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